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Abstract. Numerical simulation of the sedimentation of a polydisperse suspension in a convectively unsta-
ble medium is presented. For the simulation of 2D compressible convection, the full system of hydrodynamic
equations is solved by the explicit MacCormack scheme. Velocities and positions of suspension particles are
calculated simultaneously with the solution of the equations. Initially, the particles are randomly distributed in
the computational region. The total weight of sedimented matter is recorded during the numerical experiment.
The results are compared with the sedimentation of the same suspension without convection. To reconstruct the
particle-radius distribution function from the sedimentation curve, a new method is used. This method is based
on the solution of the sedimentation integral equation by the Tikhonov regularization method and was recently
developed by the author. To illustrate this technique, sedimentation of cement powder in air is simulated. The
suspension contains 50 000 particles. The particle radii are assumed to be log-normally distributed. Heat-driven
convection is completely determined by the top and bottom boundary temperatures of the computational region
and lateral boundary conditions. It is shown that convective motions of a medium with sedimented particles lead
to the following effect: the fine disperse fraction of the suspension remains suspended much longer than without
convection. Some particles will not sediment at all. The maximum radius of the particles of this fraction depends on
the convection parameters (e.g. on convection cell size and convection velocities). These parameters, in their turn,
depend only on the temperature difference of the top and bottom boundaries. The results of these calculations can
be applied in geology and meteorology for studying dust sedimentation in air as well as in technology. Heat-driven
convection can be used for separation of suspensions with the cut-off particle radius depending on temperature
difference only.
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1. Introduction

Sedimentation processes play an important role in a wide variety of fields in applied physics
as well as in technology for separation and purification. Many technological processes use
sedimentation for the size separation of the particles of a suspension. The study of the settling
behavior of polydisperse suspensions is a matter of great importance. The size spectrum of
particles is an important attribute of polydisperse suspensions. The sedimentation curve (the
weight of settled particles versus time) is widely used for the reconstruction of the particle-
radius distribution function. The usual technique of obtaining the particle-radius distribution
function is based on the construction of tangent lines to the sedimentation curve and measuring
the tangent line intercepts (see below). This graphic method gives only a rough histogram
and cannot be used for reconstructing small-scale details of the radius distribution function.
For example, it cannot resolve close peaks of the radius distribution function for a mixture
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of suspensions. The low accuracy of this method can be explained as follows. When we
construct the tangent lines, we use information about the sedimentation curve in the vicinity
of the tangency points only, ignoring other points of the curve. Experimental errors are always
present in the observed data. These errors lead to the great uncertainty in the slope angle of the
tangent line if we use only local information. The other common methods one way or the other
also lead to unstable solutions. The problem of reconstruction of the particle-radius distribu-
tion function from the sedimentation curve represents a clear example of so-called ill-posed
inverse problems. Special regularizing procedures were developed to solve such problems.
Each regularizing procedure essentially uses additional a priori information about the so-
lution. This information is not contained in the experimental data and must be imposed by
the researcher. Different methods of regularization require for their implementation different
amounts of additional information. Algorithms which require minimum additional informa-
tion are preferable. Hence, we need a new method for the reconstruction of the particle-radius
distribution function which meets to the following requirements: (1) the method must yield
a continuous smooth solution (instead of a rough histogram); (2) the method must be global
and should use all information contained in the sedimentation curve; (3) the method must use
a regularizing algorithm to stabilize the solution. Such a new method based on the solution of
an integral equation is proposed in this paper. The Tikhonov regularization algorithm is used
to stabilize the solution. This method requires minimum a priori information: (1) smoothness
of the solution; (2) values of the experimental errors.

Very often particles settle in a non-static medium. Sometimes medium motions have a
preferred direction such as in pipe flow, in some cases they do not, for instance in the case
of heat convection. In technology unwelcome medium motions can be reduced, but in many
cases motions are significant and have to be taken into account. Convection flows are driven
by temperature gradients. If we do not make special efforts to stabilize the temperature, con-
vection arises almost everywhere. In this case, a knowledge of convection influences on the
sedimentation process would be extremely welcome.

How does convection distort the result of the reconstruction of the particle-radius distri-
bution function? During sedimentation all particles are separated into two fractions: settled
and suspended. What is the shape of the size spectrum of suspension particles in these frac-
tions? To answer these questions, direct numerical simulations of the settling of polydisperse
suspensions are done in this paper.

2. The reconstruction of the particle-radius distribution function

Let us consider the sedimentation of a polydisperse suspension. Assume, that the suspension
particles have the same density and do not interact each other. We introduce the radius dis-
tribution function of particles q(r) in such a way that q(r) dr represents the mass fraction of
particles with radii in a range from r to r + dr. By definition the function q(r) is normalized
as follows:∫ ∞

0
q(r) dr = 1 . (1)

We assume that the particles of the suspension settle at a constant velocity

u = 2

9

�ρ

η
gr2 , (2)
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where �ρ is the difference between the density of the particles and the liquid, g is the
gravitational acceleration, and η is the viscosity of the liquid. We do not take into account
a hindered settling discussed, for example, in [1]. It means, that results of the particle-radius
reconstruction can be directly applied to the dilute suspensions.

Assume that we measure the weight of particles settled on the solid surface at a depth H .
All particles with a settling velocity

u ≥ H

t

(or, equivalently, with radii r ≥ r∗), will settle at the moment of time t . The radius r∗ is given
by the formula

r∗ =
√

9ηH

2�ρgt
. (3)

Then we introduce the mass fraction of totally settled particles Q as

Q =
∫ ∞

r∗
q(r) dr = 1 −

∫ r∗

0
q(r) dr . (4)

Particles with radii r < r∗ will settle partially. Let us consider the suspension fraction with
particle radii in the range from r to r + dr. The mass fraction of these particles is equal to
q(r) dr and their settling velocity is given by Equation (2). Only particles which are initially
near the bottom in the column of liquid h = ut in height will settle at time t . Hence, the mass
fraction of the partially settled particles with radii between r and r + dr equals

dS = h

H
q(r) dr = 2

9

�ρ

η

g

H
tq(r)r2 dr .

The mass fraction of the partially settled particles with radii 0 < r < r∗ is given by the finite
integral

S = 2

9

�ρ

η

g

H
t

∫ r∗

0
q(r)r2 dr . (5)

The total mass fraction of the settled particles is equal to

P = Q+ S = 1 −
∫ r∗

0
q(r) dr + 2

9

g�ρ

ηH
t

∫ r∗

0
q(r)r2 dr . (6)

One can rewrite Equation (6) in the following form∫ r∗(t)

0
q(r)

[
1 −

(
r

r∗(t)

)2
]

dr = 1 − P(t) . (7)

The value P(t) in the right-hand side of Equation (7) is known from the experiment (with some
error). Hence, we can consider Equation (7) as an integral equation for the radius distribution
function q(r). Taking the second time derivative from both sides of Equation (7), one can
obtain a formal solution of the integral equation

q(r∗) = −2
t2

r∗
d2

dt2
P(t) . (8)
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Figure 1. Graphic method for the reconstruction of the particle-radius distribution from the sedimentation curve.
Tangent line intercepts qi represent the mass fractions of totally settled particles at the corresponding moments of
time. The interval |q2 − q1| represents the mass fraction of suspended particles with the radii in the range between
r1 and r2.

The common method of reconstructing the particle-size distribution function from the sedi-
mentation curve is the following. One can draw tangent lines to the sedimentation curve P(t)
(see Figure 1a). The tangent line intercept q represents the mass fraction of totally settled
particles at the corresponding moment of time t . Hence, the interval |q2 − q1| represents the
mass fraction of suspended particles with the radii in the range between r1 and r2. The particle
equivalent radius is given by Equation (3), where t must be taken equal to the abscissa of
the tangency point. This procedure is no more than an application of Equation (8) with the
graphical method of calculation of the second derivative. Nothing but a rough histogram (see
Figure 1b) can be obtained by this method. We need a method which will give a possibility
of reconstructing a smooth size-distribution function, using a sedimentation curve that will be
free from the inaccuracies of the graphical method. There are two approaches to the solution of
this problem: a) to solve directly the integral Equation (7) with respect to q(r); b) to calculate
numerically the derivative of the second order from the sedimentation curve and to substitute
it in Equation (8).

When we use the second approach, it is implied that we know how to calculate correctly
the second derivative from the noisy experimental data correctly. Calculation of the derivative
from an experimental function f (x) obtained with errors represents a complicated mathemat-
ical problem. The main difficulty is the following. During the experiment we can measure
only a function f (x) + ε, where ε is a noise. The second term does not have a derivative in
the classical meaning. If we make an attempt to calculate the derivative by the usual methods,
we shall obtain an alternating-sign saw-tooth function of high amplitude and the real deriv-
ative f ′(x) will ‘sink’ in the noise generated by the second term. The problem of derivative
reconstruction from experimental data is discussed in detail in [2, 3]. It is shown that special
regularization algorithms must be used for obtaining a smooth derivative. The appropriate
method is the following. One can write an integral equation for the second derivative as∫ x

a

(x − ξ)f ′′(ξ) dξ = f (x)− f (a)− f ′(x)|x=a(x − a) . (9)

So, we can see that both approaches to the reconstruction of the particle-radius distribution
are reduced to the solution of the following Volterra integral equation of the first kind:
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Ay ≡
∫ x

a

K(x, ξ)y(ξ) dξ = f (x) . (10)

The first equality sign in Equation (10) can be considered as the definition of the integral
operator A. If we use the first approach (a) and solve the integral equation (7), the kernel
K(x, ξ) and the right-hand side f (x) in Equation (10) must be chosen as follows:

K(t, r) = 1 −
(
r

r∗(t)

)2

, f (t) = 1 − P(t) . (11)

In the second approach (b), using the formal solution (8), we must calculate the second deriv-
ative first. To obtain the derivative, we have to solve Equation (10) with the following kernel
and the right-hand side

K(t, ξ) = t − ξ, f (t) = P(t)− P(0)− P ′(t)|t=0t . (12)

It is shown [4] that the first approach is more preferable because it gives a more stable solution.

3. Tikhonov regularization

The concept of ill- (or well-) posed problems goes back to the work of J. Hadamard [5, 6]. A
problem is called well-posed if (1) a solution of the problem exists, (2) the solution is unique,
(3) the solution is stable (this means that small variations of the initial data give rise to small
variations of the solution). If any one of these conditions is violated, the problem is called
ill-posed.

The Volterra equation of the first kind has (in some sense) an intermediate position between
the Volterra equation of the second kind and the Fredholm equation of the first kind. The
Volterra equation of the second kind is well-posed and can be solved by classical methods.
The Fredholm equation of the first kind is ill-posed in any ‘reasonable’ functional spaces
and must be solved by special regularizing algorithms. The Volterra equation of the first kind
can be either ill- or well-posed, depending on the function spaces where we seek a solution.
However, even in the case when the problem is well-posed, some methods of solution can
lead to instability. It can be shown [7, 8, pp. 110–114] that the quadrature methods based on
Simpson, Newton–Cotes and other formulas of high order generate divergent algorithms, even
for the well-posed problems. Rectangle or trapezoid formulas are stable only if we choose the
step of integration in a particular way, depending on errors in the right-hand side and the
kernel. In this case, the quadrature method can be treated as a regularizing algorithm where
the step of integration plays a role of the regularizing parameter. This fact imposes a strict
limitation on the use of this method because usually the right-hand side of the integral equation
(10) is known from the experiment in the form of a table with an irregular step. So, to obtain
values of the right-hand side in the nodes of the regular grid with optimal step, we have to
solve a nontrivial (in a general case) problem of interpolation or approximation (for example
by splines) of the experimental data.

The Volterra integral equation of the first kind can be treated as a special case of the Fred-
holm integral equation of the first kind, which is ill-posed. Special regularizing algorithms
have been developed for the solution of such equations. These algorithms can be directly
applied to the solution of a Volterra integral equation of the first kind as well. We used the
Tikhonov regularization method [9, pp. 128–158] to solve the integral equation (10). There
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is an English translation of this book [10]. This method is more powerful and flexible than
‘regularized’ quadrature formulas and does not require choosing a special step of integration.

Initially, this method was developed for the solution of Fredholm integral equations of the
first kind∫ b

a

K(x, ξ)y(ξ) dξ = f (x), c ≤ x ≤ d ,
f (x) ∈ L2[c, d], K(x, ξ) ∈ L2[a, b] × [c, d], y(ξ) ∈ D ⊆ W 1

2 [a, b] .
(13)

Here D is the closed convex set of a priori limitations of the problem, such that 0 ∈ D.
Assume, that instead of the exact kernel K(x, ξ) and the right-hand side f (x) we know their
approximate values Kh(x, ξ) and fδ(x) so that∥∥fδ − f ∥∥

L2
≤ δ, ∥∥Kh −K∥∥

L2
≤ h ,

i.e. actually we solve the following equation∫ b

a

Kh(x, ξ)y(ξ) dξ = fδ(x), c ≤ x ≤ d . (14)

Assume that the exact solution y(x) is continuous and has a quadratically integrable deriva-
tive on [a, b]. Hence, Ah operates from W 1

2 [a, b] to L2[c, d]. In the Tikhonov regularization
method a solution y(x) of Equation (14) is sought as a function which minimizes the following
functional:

Mα[y] = ∥∥Ahy − fδ
∥∥2

L2
+ α∥∥y∥∥2

W 1
2
. (15)

The optimal value of the regularizing parameter α∗ can be found as a solution of the nonlinear
algebraic equation [11, pp. 55–59]

ρ(α∗) ≡ ∥∥Ahyα − fδ
∥∥2 − (δ + h∥∥yα∥∥+ µ)2 = 0 , (16)

where ρ(α) is the so-called generalized residual, and µ is the measure of incompatibility of
the initial integral equation (14). It is defined as follows:

µ = inf
y∈D(δ + h∥∥y∥∥+ ∥∥Ahy − fδ

∥∥) . (17)

For details of the numerical realization of this algorithm for the reconstruction of the particle-
size distribution function see [4]. This technique is universal and can be applied to the solution
of any Fredholm integral equation of the first kind. On the one hand, universality permits
us to use the same procedure in both approaches (a) and (b) of the reconstruction of the
particle-radius distribution function; on the other hand, it does not take into account some a
priori information about the reconstructed distribution. For example, this technique does not
preserve the positivity of the distribution. A modification of the mathematical procedure of
the reconstruction to preserve the positivity of the solution, simultaneously with taking into
account a hindered settling in Equation (7), will be done in future work.

4. Governing hydrodynamic equations

The technique of reconstructing the particle-radius distribution function based on the solution
of an ill-posed inverse problem of sedimentation described above assumes that the medium is
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static. Convection (if present) distorts the reconstruction result. Since there is no adequate an-
alytical description of convection, it cannot be taken into account directly in Equation (7). So
we are forced to simulate this process numerically. Let us consider the following model. The
suspension particles settle in a viscous compressible medium. The particles do not interact.
The particle velocity

vparticle = vsettle + vmedium

has two components: a constant settling rate vsettle, given by Equation (2), and the hydrody-
namic velocity of medium motion vmedium = (u, v). The evolution of a viscous compressible
medium is described by the full system of hydrodynamic equations



∂ρ

∂t
+ ∂

∂x
(ρu)+ ∂

∂y
(ρν) = 0 ,

∂

∂t
(ρu)+ ∂

∂x
(ρu2 + p

γ
− τxx)+ ∂

∂y
(ρuν − τxy = 0) ,

∂

∂t
(ρν)+ ∂

∂x
(ρuν − τxy)+ ∂

∂y
(ρν2 + p

γ
− τyy)+ ρ

Fr2 = 0 ,

∂E

∂t
+ ∂

∂x

[
u(E + p

γ
− τxx)− ντxy + Q̇x

]
+

∂

∂y

[
ν(E + p

γ
− τyy)− uτxy + Q̇y

]
+ ρν

Fr2 = 0 ,

(18)

where τij is the viscous stress tensor given by

τxx = 2

3

1

Re

(
2
∂u

∂x
− ∂ν

∂y

)
, τyy = 2

3

1

Re

(
2
∂ν

∂y
− ∂u

∂x

)
, τxy = τyx = 1

Re

(
∂u

∂y
+ ∂ν

∂x

)
.

Heat-transfer rates can be written in accordance with the Fourier law

Q̇x = − 1

Re Pr(γ − 1)

∂T

∂x
, Q̇y = 1

Re Pr(γ − 1)

∂T

∂y
.

Using the equation of state for an ideal gas, p = ρT , we can express the pressure p in terms
of the total energy per unit volume, E, as follows:

p = γ (γ − 1)

(
E − (ρu)2 + (ρν)2

2ρ

)
,

where γ = cp/cv is the adiabatic exponent, ρ is the density, u and ν are the x and y veloc-
ity components of the medium. The dimensionless parameters Re, Pr and Fr, given by the
following expressions

Re = ρ0a0L

η
, Pr = ηcp

k
, Fr2 = a2

0

gL
,

represent the Reynolds, Prandtl and Froude numbers, respectively, where η is the viscosity, k
is the thermal conductivity, g is the gravitational acceleration, a is the sound velocity, and L is
the characteristic size of the computational region. The subscript 0 shows that the values are
related to some reference state. The state of matter at the top end of the computational domain
is chosen as a reference state. All equations are written in terms of dimensionless variables:
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x → x

L
, t → a0

L
t, ρ → ρ

ρ0
, p → p

p0
,

u→ u

a0
, T → T

T0
, T0 → p0

ρ0R
, a2

0 = γp0

ρ0
,

where R is the gas constant.
Flows described by the full viscous system of hydrodynamic equations are mostly turbu-

lent. The turbulent viscosity ηT and the turbulent thermal conductivity kT were introduced to
take into account the effects of turbulence

ηT = ρ�2

√(
∂u

∂y

)2

+
(
∂ν

∂x

)2

, kT = cpηT

PrT
,

where � is the mixing length, PrT is the turbulent Prandtl number (PrT = 0·9 for air). Since
we want to simulate subgrid turbulence, � represents a characteristic grid-cell size and �2 =
�x�y. To add a turbulence to the dimensionless equations (18), the following changes are
necessary:

1

Re
→ 1

Re
+ 1

ReT
,

1

Re Pr
→ 1

Re Pr
+ 1

ReTPrT
,

1

ReT
= ηT

ρ0a0L
= Cρ�2

√(
∂u

∂y

)2

+
(
∂ν

∂x

)2

,

where C = 0·2 is an empirical dimensionless constant.

5. The MacCormack numerical scheme

The governing equations are written in divergence form and can be rewritten as a single vector
equation as

∂q
∂t

+ ∂F
∂x

+ ∂G
∂y

+ S = 0. (19)

The vector q = (ρ, ρu, ρv, E)T contains the independent variables. An explicit MacCormack
scheme [12, pp. 479–483] can be directly applied to Equation (19) as follows:

Predictor step :
q∗
j,k = qnj,k − �t

�x
(Fnj+1,k − Fnj,k)−

�t

�y
(Gn

j,k+1 − Gn
j,k)−�tSnj,k,

Fnj,k : 0 ≤ j ≤ Nx + 1
0 ≤ k ≤ Ny Gn

j,k : 0 ≤ j ≤ Nx 0 ≤ j ≤ Nx
0 ≤ k ≤ Ny + 1 0 ≤ k ≤ Ny ,

(20)

Corrector step :

qn+1
j,k = 1

2

[
qnj,k + q∗

j,k − �t

�x
(F∗
j,k − F∗

j−1,k)−
�t

�y
(G∗

j,k − G∗
j,k−1)−�tS∗

j,k

]
,

F∗
j,k : 0 ≤ j ≤ Nx − 1

1 ≤ k ≤ Ny − 1
G∗
j,k : 1 ≤ j ≤ Nx − 1 1 ≤ j ≤ Nx − 1

0 ≤ k ≤ Ny − 1 1 ≤ k ≤ Ny − 1
.

(21)
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The derivatives ∂F/∂x and ∂G/∂y in Equation (19) in the predictor step are approximated
by the forward one-sided finite-difference operators. Quantities F and G in their turn also
contain space derivatives ∂/∂x and ∂/∂y. In general, the numerical scheme has accuracy of
the second-order accuracy in both space and time if the following conditions are satisfied. For
the approximation of ∂/∂x in F(∂/∂y in G) in the predictor step the backward one-sided finite-
difference operator is used. The derivative ∂/∂y in F(∂/∂x in G) must be approximated by
the central finite-difference operator. In the corrector step the finite-difference operators which
approximate the derivatives ∂/∂x and ∂/∂y in F∗ and G∗ must be opposite to those used for the
approximation of ∂F∗/∂x and ∂G∗/∂y. The remaining derivatives must be approximated by
the central differences. Explicit formulae for the approximation of F and F∗ are the following:

Fnjk =




(ρu)njk

(ρu2)njk+
pnjk

γ
− 2

3

1

Re

(
2
unjk − unj−1,k

�x
− νnj,k+1 − νnj,k−1

2�x

)

(ρuν)njk−
1

Re

(
unj,k+1 − unj,k−1

2�y
+ νnjk − νnj−1,k

�x

)

unjk

[
Enjk+

pnjk

γ
− 2

3

1

Re

(
2
unjk − unj−1,k

�x
− νnj,k+1 − νnj,k−1

2�y

)]
−

νnjk

Re

(
unj,k+1 − unj,k−1

2�y
+ νnjk − νnj−1,k

�x

)
− 1

Re Pr(γ − 1)

T njk − T nj−1,k

�x




,

(22)

F∗
jk =




(ρu)∗jk

(ρu2)∗jk+
p∗
jk

γ
− 2

3

1

Re

(
2
u∗
j+1,k − u∗

jk

�x
− ν∗

j,k+1 − ν∗
j,k−1

2�y

)

(ρuν)∗jk−
1

Re

(
u∗
j,k+1 − unj,k−1

2�y
+ ν∗

j+1,k − ν∗
jk

�x

)

u∗
jk

[
E∗
jk + p∗

jk

γ
− 2

3

1

Re

(
2
u∗
j+1,k − u∗

jk

�x
− ν∗

j,k+1 − ν∗
j,k−1

2�y

)]
−

ν∗
jk

Re

(
u∗
j,k+1 − u∗

j,k−1

2�y
+ ν∗

j+1,k − ν∗
jk

�x

)
− 1

Re Pr(γ − 1)

T ∗
j+1,k − T ∗

jk

�x




.

(23)

Similar formulae can be written down for the finite-difference approximation of G and G∗. As
for any explicit scheme, numerical stability of the MacCormack scheme imposes a limitation
on the choice of the time step. For the compressible Navier-Stokes equations, when�x = �y,
it is recommended [12, p. 482] to use the following estimate of the time step:

�t ≤ �x2

[
2η

Reρ

(
2γ

Pr
+
√

2

3

)
+�x

(
|u| + |ν| + a√2

)]−1

, (24)
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where a is the sound velocity.

6. Initial and boundary conditions

Assume, that the medium is enclosed in a rectangular box with the solid top and bottom walls.
The box is heated from below bottom. Convection is driven by a temperature gradient between
top and bottom boundaries where the following Dirichlet boundary conditions are imposed:

top boundary : Tj,Ny = 1, uj,Ny = 0, νj,Ny = 0,

bottom boundary : Tj,0 = 1 +�T, uj,0 = 0, νj,0 = 0.

Let us define how to calculate the velocity gradients at the top and bottom boundaries. For the
approximation of ∂/∂y by a central finite-difference operator we must to extend the computa-
tional region, introducing non-physical nodes (j,−1) and (j,Ny + 1) for j = 0, 1, . . . , Nx .
Using the interpolation one can find the velocities in the non-physical nodes as follows:

1
2(uj,1 + uj,−1) = uj,0 ≡ 0, 1

2(uj,Ny−1 + uj,Ny+1) = uj,Ny ≡ 0,

uj,−1 = −uj,1, uj,Ny+1 = −uj,Ny−1.

Similar formulae can be written for the y-component. Now it is easy to write the central
finite-difference approximation for the derivatives as

∂u

∂y

∣∣∣∣j,0 = uj,1 − uj,−1

2�y
= uj,1

�y
,

∂u

∂y

∣∣∣∣
j,Ny

= uj,Ny−1 − uj,Ny+1

2�y
= uj,Ny−1

�y
,

∂ν

∂y

∣∣∣∣j,0 = νj,1 − νj,−1

2�y
= νj,1

�y
,

∂ν

∂y

∣∣∣∣
j,Ny

= νj,Ny−1 − νj,Ny+1

2�y
= νj,Ny−1

�y
.

Boundary conditions for the pressure and density must be consistent with the hydrodynamic
equations in the interior points of the computational grid. The boundary-layer equations give
us ∂p/∂y = 0. Taking into account that the temperature is constant at the top and bottom
boundaries, we can write the following expressions for the physical quantities in the non-
physical nodes of the computational grid:

bottom boundary top boundary

pj,−1 = pj,0 = pj,1, pj,Ny+1 = pj,Ny = pj,Ny−1,

Tj,−1 = 2Tj,0 − Tj,1, Tj,1 = pj,1

ρj,1
, Tj,Ny+1 = 2Tj,Ny − Tj,Ny−1, Tj,Ny−1 = pj,Ny−1

ρj,Ny−1
,

ρj,−1 = pj,−1

Tj,−1
= pj,1

2Tj,0 − Tj,1 , ρj,Ny+1 = pj,Ny+1

Tj,Ny+1
= pj,Ny−1

2Tj,Ny − Tj,Ny−1
,

Ej,−1 = Ej,0 + 1

2
ρj,−1(u

2
j,1 + ν2

j,1), Ej,Ny+1 = Ej,Ny + 1

2
ρj,Ny+1(u

2
j,Ny−1 + ν2

j,Ny−1).

The lateral boundary conditions are assumed to be symmetrical as follows:

νleft = νright, uleft = −uright.
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Pressure, density, and temperature must be continuous on the lateral boundaries.
The initial conditions can be obtained as a solution of Equation (18) under the assumption

that u = ν = 0 everywhere in the computational domain. Under this assumption Equa-
tions (18) are reduced to the following system:

1

γ

∂p

∂y
+ ρ

Fr2 = 0,
∂2T

∂x2
+ ∂2T

∂y2
= 0.

The initial state is static and does not depend on x. As follows from the temperature equation,
the temperature T is a linear function of the depth y

T (t) = 1 +�T (1 − y) . (25)

Taking into account the equation of state, we can easily solve the pressure equation as

ρ(y) = [
1 +�T (1 − y)] γ/Fr2−�T

�T ,

p(y) = ρ(y)T (y) = [
1 +�T (1 − y)] γ

�T Fr2 .

(26)

It should be noted that we use a system of units such that Ttop = ptop = ρtop = 1.
To provide a ‘soft’ start of the convection without shock waves, we introduce an initial

velocity field (divv = 0) of a small amplitude A

u(x, y) = A sin(2πx) cos(πy),

ν(x, y) = −A cos(2πx) sin(πy).

The velocity amplitude A is 105 times smaller than the final hydrodynamic velocities of the
medium.

7. Results and discussion

We have simulated the sedimentation of cement polydisperse powder (ρparticles = 2200 kg/m3)
in air under the normal conditions. The square computational region with a side length of
L = 10 m consists of 50×50 nodes of a uniform computational grid. The state of the medium
at the top boundary (the reference state, denoted by subscript 0) is chosen as follows:

T0 = 273·15 K, η = 1·98 × 10−5 kg/m s,

ρ0 = 1·333 kg/m3, Re = 2·2 × 108,

p0 = 101·2 kPa, Pr = 0·708,

a0 = 326 m/s, Fr = 32·931.

It must be emphasized that this value of Re does not reflect a real condition of hydrodynamic
similarity; it is just a coefficient in the hydrodynamic equations (18), based on the sound
speed instead of the characteristic velocity. Accordingly, the medium velocities are measured
in units of the sound speed. One can say in advance that the characteristic convective velocity
under such conditions must be much smaller than the sound speed. The fact is that we do
not know the characteristic velocity before calculation when we introduce the dimensionless
parameters. The parameter Re which reflects a condition of hydrodynamic similarity can be
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Figure 2. Snapshots of the computational region at different moments of simulation time during the transient
process. Brightness denotes the difference between the temperature of the medium and the linear temperature
distribution. Arrows show the amplitude and the direction of the medium velocities.

recalculated later when the maximum medium velocity will be known. The convection is
driven by the temperature gradient between the top and bottom boundaries. The computational
region is heated from the bottom. Calculations were carried out for two cases: �T = 20 K
and �T = 50 K. The time step was chosen as �t = 1·53 × 10−4 s in accordance with
Equation (24).

When a transient is completedfinished (after approximately 1·5 min. of simulation time),
the hydrodynamic system reaches a quasi-steady state. This process for �T = 50 K is
illustrated by Figure 2. It consists of snapshots of the computational region at the different
moments of simulation time. Each snapshot is a gray-scale map which shows the difference
between the temperature of the medium and the initial temperature distribution given by Equa-
tion (25). Negative values (dark) denote that the temperature of the medium at this point is
smaller than the initial temperature. Positive values (bright) indicate that the temperature is
higher than in the case when there is no convection (u = ν = 0). Arrows show the amplitude
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and the direction of the medium velocities. The maximum medium velocity amplitude and
the velocity components of the quasi-steady state are the following: |Vmax| = 1·7 m/s for
�T = 50 K and |Vmax| = 1·1 m/s for �T = 20 K. Now we can recalculate the Reynolds
number as Re = ρ0VmaxL/η = 1·1 × 106.

When the quasi-steady state is reached, 50000 particles of the suspension are randomly
distributed in the computational region. Usually, the suspension of small particles is made
by breaking. It can be shown [13] that particles of such a suspension have a log-normal
distribution of the radii. The particle radii of our suspension are assumed to be log-normally
distributed:

q(r) = 1

rσ
√

2π
exp

[
−1

2

(
log r − 〈r〉

σ

)2
]

(27)

with the following parameters 〈r〉 = 0, σ = 1/2. The radii of the particles have been chosen in
such a way that the settling time of a particle with the most probable radius from a height L =
10 m in a static medium is equal to 1 minute. For numerical simulation of the artificial sample
of lognormally distributed particle radii, we start from a random value y that is uniformly
distributed on the interval 0 ≤ y < 1. This is a very important step. Most compilers contain
built-in random-value generators. They are almost always linear congruential generators and
they do not satisfy all requirements for random-number generators. They must never be used!
We used the procedure ran1( ) from [14]. It uses a combination of three random generators
with additional shuffle which breaks up serial correlations. To obtain a random value x with a
predefined normalized density distribution function q(x) from a uniformly distributed random
number y, the following nonlinear equation must be solved with respect to x∫ x

0
q(ξ) dξ = y .

Positions of suspension particles are calculated by use of a simple Euler scheme simultane-
ously with the solution of the hydrodynamic equations (18). The total weight P(t) of settled
matter is recorded during the numerical experiment. Settled particles are excluded from the
further calculations. All particles of the suspension are separated into two fractions: settled
and suspended particles. On the one hand, the numerical simulation of the sedimentation in the
convection medium gives us a sedimentation curve P(t) (the weight of settled matter versus
time); on the other hand, it gives us information about the radii of settled and suspended
particles. If we want to study particle sizes of these two fractions, we have to know how
to calculate the particle-radius distribution function when we have a sample of suspension
particles.

The particle radius distribution function can be reconstructed directly from the sample of
finite size in the following way. The proposed approach is based on the calculation of the first
derivative from the empirical cumulative distribution function Fe(x). The probability density
distribution and cumulative distribution are related by the formula∫ x

0
q(ξ) dξ = F(x) . (28)

To obtain q(x) we have to substitute an empirical normalized cumulative distribution function

Fe(x) =




0, x < x1,

i

N
, xi ≤ x < xi+1,

1, x ≥ xN
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Figure 3. Application of the Tikhonov regularization procedure to the reconstruction of the particle-radius dis-
tribution from the sedimentation curve in the case of a static medium. Time and radius are given in normalized
units.

calculated from the experimental sample (x1, x2, . . . , xN ), in the right-hand side of Equa-
tion (28) and to solve the integral equation. The Tikhonov regularization algorithm was used
to solve this Volterra integral equation of the first kind.

Hence, the whole computational procedure consists of three steps: (1) numerical simulation
of the convection until the system will reach a quasi-steady state; (2) numerical simulation of
the sedimentation of a polydisperse suspension in the convectively unstable medium; (3) re-
construction of the particle-radius distribution from the sedimentation curve and from the
samples of particle radii of both settled and suspended fractions.

For comparison, we simulated a sedimentation of the same suspension with the same
initial distribution of particles in a static medium as well. Results of this simulation are
shown in Figure 3. Figure 3a represents the simulated sedimentation curve. The dashed line in
Figure 3b represents the initial particle-radius distribution (27). The solid line represents the
particle-radius distribution reconstructed from the simulated sedimentation curve by solution
of Equation (7). One can see a good agreement of the initial and reconstructed distributions.

The results of the numerical simulation of sedimentation in the presence of compressible
convection are shown in Figure 4. For comparison, we present the result of sedimentation in a
static medium in the same figure. The curves were simulated for two temperature differences
of the top and bottom boundaries: �T = 20 K and �T = 50 K. The curves represent a
mass fraction of settled matter versus time (time is given in normalized units). Asymptotes
are calculated as follows. The curve P(1/t) is extrapolated until it intercepts the OY axis.
The ordinate of the intersection point gives us the desired value. The convective motion of the
medium leads to the following effect. The fine dispersed fraction of the suspension remains
suspended much longer than without convection. Some particles with sufficiently small radii
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Figure 4. Sedimentation curves represent a mass fraction of settled matter versus time in the presence of 2D
compressible heat-driven convection. Asymptotes show the mass fraction of the suspended particles whichthat
will not settle. For comparison, a sedimentation curve of the same suspension in a static medium is added to the
figure.

will not settle at all. The mass of the suspended fraction depends on the average convection
velocities of the medium. Velocities in their turn depend only on the temperature difference
of the top and bottom boundaries. The greater the temperature difference (and convection
velocities), the greater the total mass of the suspended fraction.

The distribution of particle radii in settled and suspended fractions is a matter of great
interest. During numerical simulation, the radii of settled particles are registered as well. So
we have samples of radii of settled and airborne particles for every moment of time. The
problem of the reconstruction of the particle-radius distribution is reduced to the problem of
reconstructing the probability density distribution function from a sample of finite size and we
can use the approach discussed above. Results of reconstructing the particle-radius distribution
functions from the samples are shown in Figure 5. Dashed lines represent the particle-radius
distribution in suspended and settled fractions. A solid line represents the initial particle-radius
distribution.

Usually, the real experiment gives us only a sedimentation curve P(t) and, perhaps, the
sample of particles from the settled fraction, but not the sample of suspended particles. The
procedure of reconstructing the particle-radius distribution function from the sedimentation
curve described above assumes that the medium is static. Convective motions of the medium
distort the result of reconstruction. If we apply this technique directly to the sedimentation
curves in Figure 4, we do not obtain a real particle-radius distribution function, but such cal-
culations could be helpful. The result of reconstructing the particle-radius distribution function
from the sedimentation curves obtained in the presence of convection is presented in Figure 6.
The dashed lines in Figure 6 represent particle-radius distributions obtained by solution of
the integral equation (7). One can see a gap in the range of small radii, because these particles
remain suspended and do not settle. It indicates a lack of particles with small radii. Convection
acts as a size filter which separates particles on the basis of their radii. The average (and the
most probable) particle radius of suspended and settled fractions depends on the parameters
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Figure 5. Numerical results of the reconstruction of
the particle-radius distribution function from samples
of suspension particles. The solid line represents the
initial distribution. The dashed lines with the short and
long dashes represent the particle-radius distribution in
suspended and settled fractions, respectively.

Figure 6. Numerical results of the reconstruction of the
particle-radius distribution function from the sedimen-
tation curve by the Tikhonov regularization method.
The solid line represents the initial distribution. The
dashed lines with the short and long dashes represent
the particle-radius distribution reconstructed from the
sedimentation curves in the presence of convection for
the following temperature difference of the top and bot-
tom boundaries, respectively: �T = 20 K, �T =
50 K.

of convection. These parameters, in their turn, depend only on the temperature difference of
the top and bottom boundaries. It gives a possibility to develop a separation technology which
is based on the simultaneous separation action of the sedimentation and convection. In such a
method the cut-off particle radius will be controlled by choosing the appropriate temperature
difference between the top and bottom boundaries.

8. Conclusions

In this paper we have proposed a new method for the reconstruction of the particle-radius
function from the sedimentation curve. It was shown, that this problem is a special case of an
ill-posed inverse problem. The new method is based on the solution of the integral equation
of sedimentation by the Tikhonov regularization method. This approach gives a continuous
smooth distribution function. The new method is flexible and very sensitive. It can be used for
the reconstruction of the fine structure of the particle-radius distribution function. The main
input parameter of this method is the error δ of the experimental data (error of the right-hand
side of Equation (7)). Choosing the different values of this parameter we can control the degree
of smoothness of the solution.
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Convection distorts the results of the reconstruction of the particle-radius distribution func-
tion. In this case we are forced to use direct numerical simulation of the sedimentation process.
Convection acts as a size filter and separates particles into settled and suspended fractions.
The fine disperse fraction of the suspension remains suspended much longer, than without
convection. Some particles with sufficiently small radii will not sediment at all. The maximal
radius of particles of this fraction depends on parameters of the convection parameters (e.g., on
convection cell size and convection velocities). These parameters, in their turn, depend only on
the temperature difference of the top and bottom boundaries. The results of this calculations
can be applied in geology and meteorology for studying dust sedimentation in air as well as
in the technology for separation of powders separation. Heat-driven convection can be used
for the separation of a suspension with cut-off particle radius being dependent on temperature
difference only.
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